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FEBio: Finite Elements
for Biomechanics
In the field of computational biomechanics, investigators have primarily used commercial
software that is neither geared toward biological applications nor sufficiently flexible to
follow the latest developments in the field. This lack of a tailored software environment has
hampered research progress, as well as dissemination of models and results. To address
these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio),
a nonlinear implicit finite element (FE) framework, designed specifically for analysis in
computational solid biomechanics. This paper provides an overview of the theoretical ba-
sis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models,
and boundary conditions, which are relevant to numerous applications in biomechanics.
The open-source FEBio software is written in Cþþ, with particular attention to scalar
and parallel performance on modern computer architectures. Software verification is a
large part of the development and maintenance of FEBio, and to demonstrate the general
approach, the description and results of several problems from the FEBio Verification
Suite are presented and compared to analytical solutions or results from other estab-
lished and verified FE codes. An additional simulation is described that illustrates the
application of FEBio to a research problem in biomechanics. Together with the pre- and
postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for
research and development in computational biomechanics. [DOI: 10.1115/1.4005694]
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1 Introduction

Accurate, quantitative simulations of the biomechanics of liv-
ing systems and their surrounding environment have the potential
to facilitate advancements in nearly every aspect of medicine and
biology. For instance, computational models can yield estimates
of stress and strain data over the entire continuum of interest,
which is especially advantageous for locations where it may be
difficult or impossible to obtain experimental measurements.
Computational modeling in biomechanics has already become a
standard methodology, both for interpreting the biomechanical
and biophysical basis of experimental results and as an investiga-
tive approach in its own right when experimental investigation is
difficult or impossible. Applications span all fields of the biomedi-
cal sciences, including areas as diverse as molecular dynamics,
cell motility and mechanics, cardiovascular mechanics, musculo-
skeletal biomechanics and tissue engineering. Advancements in
imaging techniques and geometry reconstruction have opened the
door to patient-specific modeling [1–6], which could revolutionize
the way clinicians diagnose and treat certain pathologies. Continu-
ing improvements in speed and availability of high performance
computing hardware have allowed the use of finely discretized
geometries (e.g., high resolution representations of vertebral
bodies [7]) and sophisticated constitutive models (e.g., mixture
theory [8,9]), with the hope that these added complexities will
produce more realistic representations of biological materials.

The finite element (FE) method is by far the most common nu-
merical discretization and solution technique that has been used in
computational biosolid mechanics. The FE method provides a sys-
tematic approach for assembling the response of a complex sys-
tem from individual contributions of elements, and thus it is ideal
for the complex geometries often encountered in biomechanical

systems. It also provides a consistent way to address material
inhomogeneities and differences in constitutive models between
disjoint or continuous parts of a model. The solution procedure
involves the consideration of overall energy minimization and=or
other fundamental physical balance laws to determine unknown
field variables over the domain. The FE method has been applied
to problems in biomechanics as early as the 1970s (see, e.g., Refs.
[10–15].). The application of finite element analysis in biome-
chanics research and design has increased exponentially over the
last 30 years as commercial software availability has improved
and researchers obtained better access to appropriate computing
platforms. Applications have spanned from the molecular to cellu-
lar, tissue, and organ levels.

However, the lack of a FE software environment that is tailored
to the needs of the field has hampered research progress, dissemi-
nation of research, and sharing of models and results. Investiga-
tors have primarily used commercial software, but these packages
are not specifically geared toward biological applications, are dif-
ficult to verify [16,17], preclude the easy addition and sharing of
new features such as constitutive models, and are not sufficiently
general to encompass the broad framework needed in biome-
chanics. To address these issues, we developed FEBio (an acro-
nym for “Finite Elements for Biomechanics”), a nonlinear
implicit finite element framework designed specifically for analy-
sis in computational solid biomechanics [18].

Arguably the most important aspect of developing a new FE
code is proper verification. The American Society of Mechanical
Engineer’s “Guide for Verification and Validation in Computa-
tional Solid Mechanics” [19] defines verification as: “The process
of determining that a computational model accurately represents
the underlying mathematical model and its solution. In essence,
verification is the process of gathering evidence to establish that
the computational implementation of the mathematical model and
its associated solution are correct.”

In the case of computational solid biomechanics, the mathemat-
ical model is based on the governing equations of continuum
mechanics (in particular the conservation of linear momentum),
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the associated boundary conditions, initial conditions, and consti-
tutive equations. Development of a numerical method of analysis
based on the mathematical model requires numerical discretiza-
tion, solution algorithms, and convergence criteria [19,20]. To
verify the numerical methods and computational implementation
of the mathematical model in FEBio, it must be demonstrated that
it gives the correct solution to a set of benchmark problems that
consists of either analytical solutions or results from established
FE codes.

Our long term goal is to develop a freely available, extensible
finite element modeling framework for solid mechanics, fluid
mechanics, solute transport, and electrokinetics in biological cells,
tissues, and organs, based around the FEBio framework. To date,
no such tools are available for general use in the public domain.
The specific objectives of this paper are to introduce the theoreti-
cal framework of FEBio and to present results for a suite of verifi-
cation problems that simultaneously illustrates some of its
capabilities.

2 Overview

FEBio offers modeling scenarios, constitutive models and
boundary conditions that are relevant to numerous applications in
biomechanics. FEBio supports both quasi-static and dynamic
analyses. In a quasi-static analysis, the equilibrium response of
the system is sought and inertial terms are ignored. An incremen-
tal iterative solution is obtained by discretizing applied loads and
other boundary conditions in quasi-time. For deformable porous
media, a coupled solid–fluid problem is solved. In a dynamic anal-
ysis, the inertial terms are included to calculate the time-
dependent response of the system. FEBio uses an implicit time
integration scheme for both types of analyses.

Many different constitutive models are available to represent
biological materials and synthetic biomaterials. Many of the mate-
rials are based on the framework of hyperelasticity. Both isotropic
and anisotropic constitutive models are available. FEBio also con-
tains a rigid body constitutive model. This model can be used to
represent materials or structures whose deformation is negligible
compared to that of other materials in the overall model.

FEBio supports a wide range of boundary conditions to model
biological interactions. These include prescribed displacements,
nodal forces, surface tractions, pressure forces, and body forces
(e.g., gravity). For dynamic problems, initial conditions are avail-
able for prescribing the initial values for velocity, acceleration
and, in the case of biphasic analysis, fluid pressure and fluid flux.
Deformable models can be connected to rigid bodies. This allows
the user to model prescribed rotations and torques for rigid seg-
ments, thereby allowing the coupling of rigid body mechanics
with deformable continuum mechanics. FEBio offers several
ways to represent contact between rigid and=or deformable mate-
rials. Using a sliding surface, the user can connect two surfaces
that are allowed to separate and slide across each other but are not
allowed to penetrate. If the contacting surfaces are poroelastic, the
user can choose to allow fluid to flow through the contact interface
in the presence of a fluid pressure gradient across the interface.
The tied interface can be used to tie two possibly nonconforming
surfaces together.

FEBio is open source, and both the executables and source
code may be downloaded free of charge (http://www.febio.org).
Each downloadable package contains the executable, verifica-
tion and example problems, a user’s manual and a theory man-
ual. Precompiled executables are available for the Windows 7,
Windows XP, Linux 64 bit, Linux 32 bit, and Mac OSX plat-
forms. FEBio can be an excellent starting point for researchers
who wish to implement new technologies. Although adding
new functionality to FEBio requires some Cþþ programming
skills, the modular structure of the code greatly facilitates this
process. The source code is commented clearly and HTML docu-
mentation exists as well. To facilitate support, bug tracking and

feature requests, a public forum has been created (http://mrl.sci.
utah.edu/forums).

Two software packages that support the use of the FEBio soft-
ware have also been created. PREVIEW is a finite element prepro-
cessor that offers a graphical user interface that facilitates the
process of defining finite element models. The user can import ge-
ometry, assign material parameters, define boundary and contact
conditions, and export the final model as a FEBio input file. The
results of a FEBio run can subsequently be analyzed and visual-
ized in the finite element post-processor POSTVIEW. This environ-
ment offers tools to inspect and analyze the model results similar
to those found in most commercial finite element software pack-
ages. Both PREVIEW and POSTVIEW may be downloaded for free
from the same software website.

3 Theory and Implementation

The following section assumes knowledge of nonlinear contin-
uum mechanics and finite element methods. The FEBio Theory
Manual [21] and the references in the reference section can be
consulted for more detailed explanations of the presented theory.

3.1 Weak Form, Linearization and Finite Element
Discretization. Generally, a finite element formulation is estab-
lished by a variational statement, which represents the weak form
of a physical law. In mechanics, this can either be written as the
minimization of an energy function or, alternatively, the virtual
work equation can serve as the starting point [22]. The spatial
form of the virtual work equation, representing the weak form of
conservation of linear momentum for a deformable body, can be
written as

dW ¼
ð

v

r : dddv�
ð

v

f � dvdv�
ð
@v

t � dvda ¼ 0 (1)

Here, r is the second-order Cauchy stress tensor, dd is the second-
order virtual rate of deformation tensor, dv is a virtual velocity,
and v and @v represent the volume and surface in the deformed
configuration, respectively. Equation (1) is a highly nonlinear
function of the deformation, and an iterative method is necessary
to solve for the deformation. In FEBio, this equation is solved
using an incremental-iterative strategy based on Newton’s
method, which requires the linearization of Eq. (1) [23].

The directional derivative of Eq. (1) is needed for the lineariza-
tion. In an iterative procedure, the deformation u will be approxi-
mated by a trial solution uk. Linearization of the virtual work
equation around this trial state gives

dW uk; dvð Þ þ DdW uk; dvð Þ � u ¼ 0 (2)

where DdW uk; dvð Þ � u is the directional derivative of the virtual
work in the direction u.

In the finite element method, the domain is divided into con-
nected subunits called finite elements. The discretization process
is established by interpolating the position X of a point within a fi-
nite element in terms of the coordinates Xa of the nodes a that
define the finite element and the shape functions, Na:

X ¼
Xn

a¼1

NaXa (3)

where n is the number of nodes in a finite element. Quantities
such as spatial coordinates, displacement, velocity, and their vir-
tual equivalents can be interpolated similarly.

The discretization of Eq. (2) with Eq. (3) leads to the discrete
form of the nonlinear finite element equations [24]:

dvT �K � u ¼ �dvT � R (4)
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Here, K is the stiffness matrix, which is mostly defined by the
constitutive model, u is the vector of nodal displacements, and R
is the residual vector, which measures the difference between in-
ternal and external forces. As the virtual velocities dv are arbi-
trary, they can be eliminated. An iterative solution scheme based
on Newton’s method can be formulated as follows:

K xkð Þ � u ¼ �R xkð Þ; xkþ1 ¼ xk þ u (5)

Here, xk ¼ uk Xð Þ and xkþ1 are the current nodal coordinates at
iterations k and kþ 1, respectively. Ideally, Newton’s method
achieves a quadratic convergence rate in the neighborhood of a
solution. However, it also requires the formation and factorization
of the stiffness matrix at every iteration, which is the most costly
part of nonlinear finite element analysis from a computational
standpoint. Quasi-Newton methods offer an attractive alternative.
For these methods, the true stiffness matrix K is replaced by an
approximation that is relatively easy to calculate. FEBio uses the
BFGS method [23], which is one of the more effective quasi-
Newton methods for computational solid mechanics.

3.2 Element Technology. The 3D solid elements in FEBio
are isoparametric elements, meaning that the element geometry
and displacement fields on the element are interpolated with the
same shape functions. Currently available elements include the
linear hexahedron, pentahedron, and tetrahedron. It is well-known
that these elements tend to “lock” for nearly and fully incompres-
sible material response when using a displacement-only formula-
tion. FEBio deals with this problem by using a three-field element
formulation (the mean dilatation method) for the hexahedral and
pentahedral elements [25]. For tetrahedral elements, a nodally
integrated tetrahedron provides enhanced performance for finite
deformation and near-incompressibility compared to the standard
constant strain tetrahedron [26].

Quadrilateral and triangular shell elements in FEBio use an exten-
sible director formulation [27]. Six degrees of freedom are assigned
to each shell node: three displacement degrees of freedom and three
director degrees of freedom. A three-point Gaussian quadrature rule
is used for integration through the thickness of the shell.

FEBio also solves porous media problems using the mixture
framework known as the biphasic theory [28]. For such problems,
a fluid phase exists along with the solid phase and therefore
requires the solution of a separate fluid field problem. In FEBio, a
u–p formulation is used to solve the coupled solid–fluid problem
for the unknown displacements and fluid pressures [29]. Like the
displacements, the fluid pressures are defined at the nodes and the
biphasic elements are integrated using the same quadrature rule as
the structural elements. In the formulation an additional equation
is needed to satisfy the conservation of mass for the mixture. The
weak formulation now requires the solution of a coupled
displacement-pressure problem.

dWm /; p; dvð Þ ¼
ð

v

r : dddv�
ð

v

f � dvdv�
ð
@v

t � dvda ¼ 0 (6)

and

dWf /; p; dpð Þ ¼
ð

v

w � r dpð Þ � dp1 : d½ �dv�
ð
@v

dpw � nda ¼ 0

(7)

Equation (6) is recognized as the virtual work Equation (1). In Eq.
(7), dp is a virtual fluid pressure and w is the flux of fluid relative
to the solid, which can be calculated for instance by Darcy’s law
w ¼ �krp, where k is the permeability tensor, and n is the unit
outward normal to @v.

3.3 Constitutive Models. The material representations in
FEBio span the range of elastic solids, viscoelastic solids, biphasic

materials, biphasic-solid materials, and rigid bodies. Many of the
constitutive models are based on the concept of hyperelasticity.
Constitutive models with isotropic, transversely isotropic [30],
and orthotropic material symmetries are available. For most mate-
rials, uncoupled formulations are used so that these materials can
be used effectively in nearly incompressible analyses. Detailed
descriptions of all of the materials in FEBio can be found in the
FEBio Theory Manual [21].

3.3.1 Contact. Several contact algorithms are available in
FEBio. To enforce the contact constraint, a contact work contribu-
tion is added to the virtual work statement in Eq. (1). The contact
integral is of the following form:

Gc ¼ �
ð

C 1ð Þ
c

t 1ð Þ xð Þ � w 1ð Þ xð Þ � w 2ð Þ �y xð Þð Þ
h i

dC (8)

Here, t ið Þ is the contact reaction force on body i and w ið Þ are
weight functions. One can also look at t as a Lagrange multiplier
that enforces the contact constraint. This contact formulation is
general enough to support both sliding interfaces, where the
objects may slide across each other, and tied interfaces, where
both objects are required to stick together at the contact interface.
In the case of porous permeable media, a new contact algorithm
between biphasic materials allows for tracking of fluid flow across
the contact interface. In other words, fluid can flow from one side
of the contact interface to the other when both contact surfaces are
biphasic [31]. FEBio supports both a standard penalty-type
enforcement of the contact constraint, as well as the augmented
Lagrange method, which calculates the Lagrange multipliers
incrementally [32].

3.4 Rigid Bodies. Rigid bodies are supported as a separate
material type. For groups of elements, faces and=or nodes that are
assigned the “rigid body” material type in FEBio, nodal degrees
of freedom are condensed down to six degrees of freedom. The
result is a vast reduction in the number of the total degrees of free-
dom and leads to a very efficient implementation of the rigid body
constraint [33]. Rigid bodies can also be connected by rigid joints.
The rigid joint constraints are enforced using an augmented
Lagrangian method.

3.5 Linear Solvers. As over 90% of the execution time of
large problems in an implicitly integrated nonlinear FE code is
spent in the linear solver (which is called repeatedly for the New-
ton or quasi-Newton solution method), the linear solver is typi-
cally the bottleneck for large computations. Consequently, an
efficient and robust linear solver was needed. The linear solver
must run on all supported platforms (Linux, Windows, Mac), take
optimal advantage of the sparseness of the stiffness matrix, handle
both symmetric and nonsymmetric matrices (necessary for bipha-
sic problems), and support parallel execution. For this reason,
FEBio includes support for PARDISO [34,35], SUPERLU [36], and
WSMP [37]. These solvers take optimal advantage of the sparse
stiffness matrix by storing only the nonzero matrix elements using
the Harwell–Boeing matrix storage format. Further, they can han-
dle nonsymmetric matrices and support parallel execution on mul-
ticore shared-memory architectures.

3.6 Software Implementation. FEBio is written in Cþþ.
This programming language was chosen over FORTRAN—the more
commonly used language in scientific computing—for two rea-
sons. First, the performance penalties that once existed in object-
oriented programming languages (compared to procedural lan-
guages such as FORTRAN) have been mostly overcome by modern
compilers [38]. Second, Cþþ encourages the use of a modular
code structure that simplifies the development and maintenance of
a sophisticated software program. This modular structure also
offers advantages for users who wish to customize FEBio for their
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own needs. For instance, it provides a simple yet elegant way to
add new materials without the need to modify any of the existing
code. By simply providing a new constitutive relation, the new
material is automatically recognized in the input format and sup-
ported in restart analyses, the parameter optimization module, as
well as all other features of FEBio that support different materials.
To simplify the addition of custom materials further, a custom
math library was designed that facilitates the implementation of
tensor and matrix operations. This library allows the user to
implement the material model using programming statements that
closely resemble the analytical mathematical expressions. To ver-
ify the material implementation, several diagnostic tools are avail-
able for the developer to check the consistency between the stress
tensor and the fourth-order elasticity tensor. The software is com-
mented extensively to clarify the data flow of the code. Online
documentation of the source code is available as well.

4 Verification Problems

Results produced by FEBio were compared to analytical solu-
tions or the solutions from two established and verified FE codes,
ABAQUS (Version 6.7, Simulia, Providence, RI) and NIKE3D (Ver-
sion 3.4.1, Methods Development Group, Lawrence Livermore
National Laboratory, Livermore, CA [39]). The problem descrip-
tion and results are presented together for each verification prob-
lem. The FEBio Verification Suite consists of over 140 test
problems, and those described in the following are representative.

4.1 Uniaxial Tension-Compression Material Tests. The
single-element uniaxial stress test is a standard verification test for
material models. As the deformation is homogeneous, the analyti-
cal solution can often be obtained in closed form. This allows for
direct comparison of the FEBio results with the analytical solu-
tion. In this case study, results for the Mooney–Rivlin and Ogden
hyperelastic constitutive models are presented. Both materials are
often used to represent the matrix component of biological tissues.
The Mooney–Rivlin constitutive model in FEBio has the follow-
ing uncoupled strain-energy function:

WMR ¼ C1
~I1 � 3
� �

þ C2
~I2 � 3
� �

þ K

2
ln Jð Þ2; (9)

where C1 and C2 are material parameters, K is the bulk modulus,
~I1 and ~I2 are the first and second deviatoric invariants of the right
Cauchy–Green deformation tensor C ¼ FTF, F is the deformation
gradient, and J ¼ det Fð Þ is the Jacobian of the deformation. The
material parameters were chosen to be C1 ¼ 6:8 MPa, C2 ¼ 0,
which approximates the material parameters of articular cartilage
during fast loading [40]. The value of K was chosen sufficiently
high to satisfy near-incompressibility (K � 105 MPa).

The Ogden constitutive model with uncoupled deviatoric and
dilatational response has the following strain-energy function
[41]:

WOG k1; k2; k3; Jð Þ ¼
XN

i¼1

ci

m2
i

~kmi

1 þ ~kmi

2 þ ~kmi

3 � 3
� �

þ K

2
ln Jð Þ2

(10)

Here, ~ki are the deviatoric principal stretches and ci and mi are
material coefficients. Material incompressibility was enforced
using the augmented Lagrangian method. Material coefficients
were chosen to represent the bulk soft tissue properties of the
heel-pad (N¼ 1, c1 ¼ 0:0329 MPa, m1 ¼ 6:82) [42]. Again, the
bulk modulus K was chosen sufficiently high to enforce near-
incompressibility. Results from FEBio were compared to analyti-
cal solutions. Excellent agreement was achieved between the
analytical solutions and the predicted responses from FEBio for
both constitutive equations (Fig. 1).

4.2 Confined Compression Creep. The confined compres-
sion creep test is often used for material characterization of de-
formable porous media [28,43,44]. A cylindrical tissue sample is
placed in a confining chamber with rigid impermeable bottom and
side walls. The top of the tissue is compressed with a free-
draining rigid porous indenter. If a constant applied load is used, a
creep deformation is produced, increasing over time (Fig. 2).

A unit cube was created and the nodes were constrained so that
only the top surface could move along the normal direction. A
pressure of 0.001 MPa was applied to the top surface. The mate-
rial was assumed to be biphasic. The solid phase was modeled as
a neo-Hookean material with strain energy given by

WNH ¼ l
2

I1 � 3ð Þ � l ln J þ k
2

ln Jð Þ2 (11)

Here, l and k are the Lamé parameters, I1 ¼ trC is the first invari-
ant of the right Cauchy–Green deformation tensor. For this prob-
lem, the material parameters were chosen to be k ¼ 1:43 MPa and
l ¼ 0:357 MPa and the permeability of the mixture was chosen to
be 10�3 mm4=N s. Results from FEBio were compared to the ana-
lytical solution in Mow et al. [28] for verification. The creep
response predicted by FEBio was in excellent agreement with the
analytical solution for the confined compression problem (Fig. 2).

4.3 Unconfined Compression Stress Relaxation. In this
test, a cylindrical tissue sample is exposed to a prescribed dis-
placement in the axial direction while left free to expand radially.

Fig. 1 Simulation of uniaxial tension-compression material
tests for the Mooney–Rivlin (top) and Ogden (bottom) constitu-
tive models. There was excellent agreement between the analyt-
ical solutions and the predictions from FEBio for both
constitutive equations.
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After loading the tissue, the displacement is held constant while
the tissue under the displacement relaxes in the radial direction
due to interstitial fluid flow through the material. For porous
media, the outer radial boundary is free-draining (Fig. 3, arrows).

A quarter-symmetry mesh was used to model the cylindrical tis-
sue sample. The outer radius and height of the cylinder were 1 mm,
whereas the axial compression was 0.01 mm. The bottom of the tis-
sue was constrained and quarter-symmetry boundary conditions
were applied. The fluid pressure was constrained to zero at the outer
radial surface, whereas the fluid pressure throughout the rest of the
body was determined by solution of the equilibrium equations for
porous media. The solid phase was represented as a neo-Hookean
material (Eq. (11), k ¼ 0:186 MPa, l ¼ 0:435 MPa) and the per-
meability of the mixture was chosen to be 10�3mm4=N s.

The unconfined compression response can be modeled with the
biphasic theory [28]. For the special case of a cylindrical geome-
try and assumptions regarding the direction of the fluid flow, Arm-
strong et al. [45] found a closed-form analytical solution for the
average axial stress on the sample in response to a step loading
function. The axial stress predicted by FEBio was nearly identical
to the analytical solution provided by Armstrong et al. (Fig. 3).

4.4 Strip Biaxial Stretching of an Elastic Sheet with a
Circular Hole. This example demonstrates the use and verifies
the results of a hyperelastic material in plane stress under large de-
formation. A thin, initially square sheet containing a centrally
located circular hole was subjected to strip biaxial stretch. The

undeformed square sheet was 165� 165� 2 mm, with a centrally
located internal hole of radius 6.35 mm (Fig. 4). The sheet was
meshed with 32 hexahedral elements. This example is identical to
the problem in Sec. 1.1.8 of the ABAQUS Benchmark Manual (Ver-
sion 6.7).

The sheet was stretched to a length of 1181 mm (615.76%
strain), whereas the edges parallel to the displacement were
restrained from contracting. The sheet was represented as a
hyperelastic Mooney–Rivlin material with uncoupled deviatoric
and volumetric behavior (Eq. (9)). The material coefficients were
C1 ¼ 0:1863 MPa, C2 ¼ 0:00979 MPa, and K¼ 100 MPa, as used
by Oden [46] to match the experimental results for a rubber sheet
first reported by Treloar [47]. The reaction force predicted by
FEBio was compared to results from ABAQUS and NIKE3D as a func-
tion of percent elongation.

The total nodal reaction force predicted by FEBio was identical
to the results produced by NIKE3D, but was slightly higher than pre-
dictions from ABAQUS (Fig. 4). The small difference is likely due
to the slightly different implementation of the Mooney–Rivlin ma-
terial in ABAQUS. More specifically, ABAQUS uses a different func-
tion for the dilatational strain energy (that is, the last term in
Eq. (9)) than FEBio and NIKE3D.

4.5 Geometrically Nonlinear Analysis of a Cantilever
Beam. A 10 m long cantilever beam was subjected to a tip load
in the transverse direction to produce over 8 m of lateral deflection

Fig. 2 Confined compression creep testing of deformable po-
rous media. (Top) Loading and boundary conditions for the
confined compression creep simulation. (Bottom) Creep dis-
placement as a function of time, calculated from the analytical
solution and predicted by FEBio, showing the excellent agree-
ment between the two results.

Fig. 3 Unconfined compression stress relaxation. (Top)
Quarter-symmetry model used for the simulation with the free
fluid flow through the outer boundaries indicated with arrows.
(Bottom) Axial stress versus time calculated from the analytical
solution and predicted by FEBio, showing the excellent agree-
ment between the two results.
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(Fig. 5). The beam had a solid rectangular cross section (100 mm
thick� 150 mm height) and three different mesh densities were
used (100, 200, and 400 elements along the length of the beam).
One element was used through the thickness in all cases. One end
of the beam was constrained using nodal constraints, whereas a
vertical load of 269.35 N was applied at the opposite tip of the
beam. The beam was represented as a hyperelastic St. Venant–
Kirchhoff elastic material:

WSV ¼ 1

2
k trEð Þ2þl E : Eð Þ (12)

where k and l are the Lamé parameters (k¼ 0 MPa, l¼ 50 MPa)
and E is the Green–Lagrange strain tensor. The use of the Green–
Lagrange strain tensor in the formulation of the St. Venant–
Kirchhoff constitutive equation makes it appropriate for the large
rotations and small strains in this problem. The cantilever tip
deflection predicted by FEBio was compared to the analytical so-
lution for the large deflection of a cantilever beam [48].

The beam deflection predicted by FEBio was nearly identical to
the analytical solution for the geometrically nonlinear analysis of
a cantilever beam for a model with 400 elements along the length
of the beam (Fig. 5). Models with 100 and 200 elements produced
a slightly stiffer response.

4.6 Twisted Ribbon Test for Shells. This is one of a number
of verification problems that are used to verify the shell element
formulation in FEBio. A plate discretized with shell elements was
twisted by constraining one end and applying equal but opposite
forces to the corners of the nonconstrained end (Fig. 6). The prob-
lem description and analytical solution were originally presented
by Batoz [49]. The plate dimensions were 1.00� 2.00� 0.05 mm
and five models with mesh densities from 32 to 2048 elements
were used for a convergence study. Nodes along one short edge
were clamped using nodal constraints and the plate was twisted by
applying equal but opposite forces of 1 N to the corners nodes
of the opposite short edge. The St. Venant–Kirchhoff material
was used (Eq. (12), k¼ 2.5� 107 MPa, l¼ 2� 106 MPa). The

displacement of the corner node predicted by FEBio was com-
pared to the analytical solution.

The corner displacement predicted by FEBio was nearly identi-
cal to the analytical solution for the twisted ribbon test for shells
when 2048 elements were used to mesh the plate (Fig. 6). To put
this result in perspective, the corner displacement predicted by
FEBio was <2% different when half that many elements were
used and �30% different when only 32 elements were used.

4.7 Upsetting of an Elastic Billet. This problem is com-
monly used to test finite element approaches for enforcing near-
and full-incompressibility, as the domain is highly constrained. A
billet of material was compressed between two rigid flat surfaces
(Fig. 7(A)). As the material was only compressed to the point
when the material bulging from the middle of the billet makes
contact with the flat surfaces (Fig. 7(B)), this problem is a simpli-
fication of the contact problem presented in the next example
(Fig. 7(C)).

A quarter-symmetry, plane strain model was produced (Fig.
7(A)). The model dimensions were 1.0� 1.0� 0.1 mm, and a
mesh of 10� 10� 1 elements produced converged results. Bound-
ary and loading conditions were prescribed using nodal con-
straints and nodal loads, respectively. The billet was represented
as an uncoupled Mooney–Rivlin material (Eq. (9), C1¼ 1 MPa,

Fig. 4 Strip biaxial stretching of an elastic sheet with a circular
hole. (Top) Quarter-symmetry model used for this simulation
(A) and deformed configuration after applied strain (B). (Bot-
tom) Total nodal reaction force versus percent elongation for
FEBio, NIKE3D, and ABAQUS. FEBio and NIKE3D predicted identical
results that were slightly different than ABAQUS due to the differ-
ent algorithms used to enforce the material incompressibility.

Fig. 5 Geometrically nonlinear analysis of a cantilever beam.
(Top) Cantilever beam in the undeformed and deformed config-
urations showing the beam length and deflection. (Bottom) End
displacement versus percentage of applied load for the analyti-
cal solution and FEBio simulations using 100, 200, and 400 ele-
ments along the length of the beam. The beam deflection
predicted by FEBio was nearly identical to the analytical solu-
tion when 400 elements were used to discretize the beam.
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C2¼ 10 MPa, K¼10,000 MPa). The augmented Lagrangian
method was used to enforce incompressibility [32]. The displace-
ment of the top right node of the mesh (representing the amount
of lateral bulging) was plotted versus the percent compression and
the results from FEBio were compared to results from ABAQUS and
NIKE3D.

The lateral displacement of the billet predicted by FEBio was
nearly identical to the results produced by ABAQUS and NIKE3D

(Fig. 7, right panel).
To verify the contact algorithm implemented in FEBio, contact

between the incompressible material of the billet and the rigid
plane was added to the problem. The billet was compressed 60%
of its original height, causing extensive contact between the rigid
plane and the material originally in the middle of the billet. The
boundary conditions for this problem were the same as the previ-
ous problem, but here the compression of the billet was caused by
frictionless contact between the billet and rigid plane. This contact
was enforced using an augmented-Lagrangian method. Again, the
lateral displacement of the billet predicted by FEBio was nearly
identical to the results produced by ABAQUS and NIKE3D. The results
from the noncontact and contact problems lined up through the
smaller range of compression (Fig. 7, right panel).

4.8 Crushing of a Pipe. This problem simulated the crushing
of a long, straight pipe of cylindrical cross section between two
flat, frictionless anvils. This benchmark problem includes large
strains=rotations and contact between deformable and rigid mate-
rials. A quarter-symmetry, plane strain model of a 114.3 mm ra-
dius pipe with an 8.87 mm thickness was created for this problem
(Fig. 8). The model was meshed with 24 elements along the arc,
four elements through the thickness, and one element through the
length. Nodal constraints were used for the plane-strain and
quarter-symmetry boundary conditions, and the problem was
driven by prescribing a 50 mm displacement to the rigid body.
Contact between the anvil and pipe was enforced using the

augmented Lagrangian method. The St. Venant–Kirchhoff mate-
rial was used for this problem (k ¼ 107 GPa, l ¼ 71:5 GPa). The
rigid body reaction force predicted by FEBio was compared to the
results from NIKE3D and ABAQUS as a function of anvil
displacement.

The results predicted by the three FE codes are shown in Fig. 8,
demonstrating good agreement among all three codes. Small
observed differences were most likely due to the different algo-
rithms to enforce contact. Still, at peak displacement there was
less than 3% difference in the predicted forces.

4.9 Cartilage Layer Compressed by a Flat, Rigid, Imper-
meable Surface. A half-symmetry finite element frictionless con-
tact analysis was performed between a spherical elastic layer
anchored to a rigid impermeable substrate and a flat impermeable
rigid surface (Fig. 9). The geometry was representative of the
articular layer of an immature bovine humeral head, with a carti-
lage surface radius of 46.3 mm and a cartilage layer thickness of
0.8 mm. The converged mesh consisted of 20 tri-linear hexahedral
elements through the thickness, 50 along the radial direction, and
14 along the circumferential direction. The top of the cartilage
layer was constrained by defining the top layer of nodes as a rigid
body with all 6 degrees of freedom constrained. The deformation
at the center of the articular layer was set to 0.095 mm (�12% of
the thickness) by displacing the bottom nodes using nodal pre-
scribed displacements. The cartilage layer was represented by the

Fig. 6 Twisted ribbon test for shells. (Top) Model in the unde-
formed configuration with loading and boundary conditions
indicated. (Bottom) Displacement of the outside corner node
versus number of elements used to discretize the model. 2048
elements were needed to exactly match the analytical solution,
but there was <2% difference when only half that many ele-
ments were used to discretize the model.

Fig. 7 Upsetting of an elastic billet. (Top) Quarter-symmetry
model in the initial configuration (A); billet deformed until there
is contact between the inner material of the billet and the rigid
planes (B); and deformed billet with contact between the inner
material and the rigid planes (C). (Bottom) Lateral displacement
(bulge) versus percent compression for FEBio, NIKE3D, and
ABAQUS. There was excellent agreement in the predicted results
from all three FE codes for both the contact and noncontact
versions of this problem.
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Mooney–Rivlin constitutive model in Eq. (9) to approximate the
short-time response of the tissue, again using C1 ¼ 6:8 MPa and
C2 ¼ 0. The radial and circumferential stresses predicted by
FEBio through the thickness of the middle of the cartilage layer
were compared to the results from ABAQUS and NIKE3D.

The predicted radial and circumferential stresses through the
thickness of the middle of the cartilage layer were the same for
FEBio and NIKE3D, but the stresses predicted by ABAQUS were con-
sistently slightly larger (Fig. 9). The small differences (<3%) are
most likely due to differences in the algorithms used to enforce
the contact constraint: FEBio and NIKE3D use an augmented
Lagrangian method to enforce contact, whereas ABAQUS uses a
Lagrange multiplier method.

4.10 Validated Model of the Human Inferior Glenohum-
eral Ligament. This problem illustrates the use of FEBio for a
current research topic in computational biomechanics. The objec-
tive of the research was to develop and validate a model of the in-
ferior glenohumeral ligament using experimental data. The
subject-specific model incorporated experimental measurements
of the geometry of capsular regions, humerus, and scapula, the
mechanical properties of capsular regions; and joint kinematics
during a simulated clinical exam. Strain distributions were meas-
ured experimentally and used to validate the FE model predic-
tions. A full description of the model and its validation were
reported by Moore et al. [50]. This original publication made use
of NIKE3D for the finite element analysis. At the time, only hypoe-
lastic materials could be used with shell elements in NIKE3D to rep-
resent the capsule. We re-analyzed this model in FEBio, which
has allowed the use of a variety of more appropriate and accurate
constitutive models for the capsule material (Fig. 10) [51].

5 Discussion

This paper presented FEBio, a new software tool for computa-
tional biomechanics. Some of the underlying theoretical aspects
were discussed. In particular, the two most important areas of
application were mentioned, namely large deformation and

contact of solid and biphasic materials. FEBio provides analysis
methods and constitutive models that are relevant for computa-
tional biomechanics and in this regard differs from many of the
existing software tools that are currently in use for research.
Although users must tailor their use of commercial applications
around the limitations of the software, FEBio offers them a way to
tailor the software to their specific needs.

A set of test problems was presented to illustrate our approach
to verification of the presented algorithms. The results demon-
strated very good to excellent agreement with either analytical
solutions and=or results obtained from other finite element soft-
ware. Small discrepancies were easily explained by differences in

Fig. 8 Crushing of a pipe. (Top, left) Quarter-symmetry model
with rigid crushing planes and key dimensions shown. (Top,
right) Pipe in the final crushed configuration. (Bottom) Rigid
body reaction force versus percent applied displacement for
the crushing planes. There was less than a 3% difference in the
peak forces predicted by the three FE codes.

Fig. 9 Cartilage layer compressed by a flat, rigid, impermeable
surface. (Top) Schematic of the model illustrating the boundary
and loading conditions. (Middle) Radial stress versus percent
thickness through the middle of the cartilage layer predicted by
FEBio, NIKE3D, and ABAQUS. (Bottom) Circumferential stress ver-
sus percent thickness predicted by the three FE codes. The
stresses predicted by FEBio and NIKE3D were nearly identical
and the stresses predicted by ABAQUS were less than 3% differ-
ent than the other codes.
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numerical algorithms between the different software packages.
These results give researchers confidence that FEBio can provide
accurate results for their computational research questions as well.
Of course, problem-specific verification, mesh convergence stud-
ies and validation are still necessary to assure that the predictions
from FEBio (or any other FE code) are accurate for a specific
problem [16,17].

The development of FEBio is ongoing. New element formula-
tions, contact algorithms, and constitutive equations are being
implemented and will become available in future versions. Con-
tinued emphasis will be placed on support and dissemination of
FEBio in the form of documentation of the software and its exam-
ple problems, online manuals, and on our online forum. We hope
that this open-source finite element framework using modern soft-
ware design principles will not only provide a new and useful tool
for computational biomechanics, but also set a new standard for
computational simulation software in this field.
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