Pellicer-Valero OJ, Rupérez MJ, Gonzalez-Perez V, Martín-Guerrero JD. 2023. Chapter 14 - Deep learning contributions for reducing the complexity of prostate biomechanical models. In: Chinesta F, Cueto E, Payan Y, Ohayon J, editors. Reduced Order Models for the Biomechanics of Living Organs. Academic Press. p. 271–292.
Nadel J, Heflin JA, Brockmeyer DL, Iyer RR. 2023. Traumatic Spine Injury. In: Shimony N, Jallo G, editors. Pediatric Neurosurgery Board Review: A Comprehensive Guide. Springer International Publishing. p. 299–316.
Gefen A. 2023. Innovation in Laboratory Evaluations of the Performance of Treatment and Prophylactic Dressings Under Clinically-Relevant Usage Conditions. In: Mani R, editor. Chronic Wound Management: The Significance of Evidence and Technology. Springer International Publishing. p. 141–152.
Díaz Lantada A, Solórzano W, Martínez Cendrero A, Zapata Martínez R, Ojeda C, Munoz-Guijosa JM. 2022. Methods and Technologies for the Personalized Design of Open-Source Medical Devices. In: Arti Ahluwalia, editor. Engineering Open-Source Medical Devices: A Reliable Approach for Safe, Sustainable and Accessible Healthcare. Springer. p. 191–218.
Lustig M, Amrani G, Lustig A, Azaria L, Margi R, Koren Y, Kolel A, Bar-Shai N, Exsol A, Atias M. 2021. Modeling effects of sustained bodyweight forces on adipose tissue microstructures and adipocytes in diabesity. In: Amit Gefen, editor. The Science, Etiology and Mechanobiology of Diabetes and its Complications. Elsevier. p. 43–61.
Gholamalizadeh T, Darkner S, Cattaneo PM, Søndergaard P, Erleben K. 2021. Mandibular Teeth Movement Variations in Tipping Scenario: A Finite Element Study on Several Patients. In: Karol Miller AW, editor. Computational Biomechanics for Medicine. Springer. p. 31–43.
Tapp A, Payer C, Schmid J, Polanco M, Kumi I, Bawab S, Ringleb S, St Remy C, Bennett J, Kakar RS. 2021. Generation of Patient-Specific, Ligamentoskeletal, Finite Element Meshes for Scoliosis Correction Planning. In: Ronan Nugent, editor. Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning. Springer. p. 13–23.
Shaulian H, Gefen A, Wolf A. 2021. Computational modeling of the plantar tissue stresses induced by the clinical practice of off-loading of the diabetic foot. In: Amit Gefen, editor. The Science, Etiology and Mechanobiology of Diabetes and its Complications. Tel Aviv: Elsevier. p. 35–42.
Li J. 2021. Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology. In: Jin Z, Li J, Chen Z, editors. Woodhead Publishing. p. 81–98. https://doi.org/10.1016/B978-0-12-819531-4.00005-5.
Friedman R, Shabshin N, Payan Y, Gefen A. 2020. Chapter 7 - Heel ulcers: investigating injurious tissue load thresholds in humans, based on a patient-specific computational heel model. In: Gefen A, editor. Academic Press. p. 123–139. https://doi.org/10.1016/B978-0-12-815028-3.00007-9.
Khang A.  Lejeune E., Sacks M.S. HDP. 2020. Multi-scale Modeling of the Heart Valve Interstitial Cell. In: Y. Z, editor. Vol. 23. Springer, Cham. https://doi.org/10.1007/978-3-030-20182-1_2.
Flynn C. 2019. Experimental Characterisation: Rich Deformations. In: Limbert G, editor. Vol. 22. Springer, Cham. p. 215–234. https://doi.org/10.1007/978-3-030-13279-8_7.
Jiang J, Peng B. 2018. Ultrasonic Methods for Assessment of Tissue Motion in Elastography. In: Nenadic I, Urban M, Greenleaf J, Gennisson J, Bernal M, Tanter M, editors. Wiley.
Nataraj R. 2018. Optimizing User Integration for Individualized Rehabilitation. IntechOpen. p. 49–68. https://doi.org/10.5772/intechopen.70267.
Levy A, Shoham N, Kopplin K, Gefen A. 2018. The Critical Characteristics of a Good Wheelchair Cushion. In: Romanelli M, Clark M, Gefen A, Ciprandi G, editors. London: Springer London. p. 17–31. https://doi.org/10.1007/978-1-4471-7413-4_2.
van der Sluis O, Vossen B, Neggers J, Ruybalid A, Chockalingam K, Peerlings R, Hoefnagels J, Remmers J, Kouznetsova V, Schreurs P, et al. 2018. Advances in Delamination Modeling of Metal/Polymer Systems: Continuum Aspects. In: Morris JE, editor. Cham: Springer International Publishing. p. 83–128.
Gomez AD, Xing F, Chan D, Pham DL, Bayly P, Prince JL. 2017. Motion Estimation with Finite-Element Biomechanical Models and Tracking Constraints from Tagged MRI. In: Wittek A, Joldes G, Nielsen PMF, Doyle BJ, Miller K, editors. Cham: Springer International Publishing. p. 81–90. https://doi.org/10.1007/978-3-319-54481-6_7.
Evans S. 2017. How Can We Measure the Mechanical Properties of Soft Tissues? In: Avril S, Evans S, editors. Vol. 573. Springer International Publishing. p. 67–83. https://doi.org/10.1007/978-3-319-45071-1_3.
Dhume RY, Barocas VH. 2017. Fiber-Network Modeling in Biomechanics: Theoretical and Analytical Approaches. In: A. Holzapfel G, Ogden RW, editors. Vol. 20. Springer International Publishing. p. 271–307. https://doi.org/10.1007/978-3-319-41475-1_7.
Ateshian GA. 2017. Mixture Theory for Modeling Biological Tissues: Illustrations from Articular Cartilage. In: Holzapfel GA, Ogden RW, editors. Vol. 20. Springer International Publishing. p. 1–51. https://doi.org/10.1007/978-3-319-41475-1_1.
Marchesseau S, Chatelin S, Delingette H. 2017. Non linear Biomechanical Model of the Liver. In: Yohan P, Jacques O, editors. Elsevier. p. 602.
Kraft RH, Fielding RA, Lister K, Shirley A, Marler T, Merkle AC, Przekwas AJ, Tan XG, Zhou X. 2016. Modeling Skeletal Injuries in Military Scenarios. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 1–33. https://doi.org/10.1007/8415_2016_191.
Reese SP, Weiss JA. 2015. Tendons and Ligaments: Current State and Future Directions. Springer London. p. 159–206. https://doi.org/10.1007/978-1-4471-6599-6_8.
Aggarwal A, Sacks M. 2015. A Framework for Determination of Heart Valves’ Mechanical Properties Using Inverse-Modeling Approach. In: van Assen H, Bovendeerd P, Delhaas T, editors. Vol. 9126. Springer International Publishing. p. 285–294. https://doi.org/10.1007/978-3-319-20309-6_33.
Choi H, Chincisan A, Magnenat-Thalmann N. 2015. A Collective Approach for Reconstructing 3D Fiber Arrangements in Virtual Musculoskeletal Soft Tissue Models. In: Doyle B, Miller K, Wittek A, Nielsen PMF, editors. Springer International Publishing. p. 117–128. https://doi.org/10.1007/978-3-319-15503-6_11.
Filas BA, Xu G, Taber LA. 2015. Probing Regional Mechanical Properties of Embryonic Tissue Using Microindentation and Optical Coherence Tomography. Vol. 1189. Springer. p. 3–16. https://doi.org/10.1007/978-1-4939-1164-6_1.
Lee C-H, Amini R, Sakamoto Y, Carruthers CA, Aggarwal A, Gorman RC, Gorman III JH, Sacks MS. 2015. Mitral Valves: A Computational Framework. Springer London. p. 223–255. https://doi.org/10.1007/978-1-4471-6599-6_10.
Stark H, Schilling N, Fischer MS, Gussew A, Hiepe P, Rzanny R, Reichenbach JR, Ullrich B, Hofmann GO, Taut F, et al. 2015. Vergleichende biomechanische Untersuchungen von offenen und perkutanen Operationstechniken bei einer Spondylodese. In: Dienstbühl I, Stadler M, Scholle H-C, editors. Vol. 21. Verlag Bussert & Stadeler. p. 291–297.
Madison AM, Haidekker MA. 2015. Image-Based Modeling for Bioengineering Problems. In: Zhang G, editor. CRC Press. p. 425–460.
Moosbauer C. 2015. Inverse Problems in Dynamic Elasticity Imaging. Hamburg: Anchor Academic Publishing.
Federico S. 2015. Porous Materials with Statistically Oriented Reinforcing Fibres. In: Dorfmann L, Ogden RW, editors. Springer Vienna. p. 49–120.
Mensch A, Piuze E, Lehnert L, Bakermans A, Sporring J, Strijkers G, Siddiqi K. 2015. Connection Forms for Beating the Heart. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young A, editors. Springer International Publishing. p. 83–92.
Nagel T, Böttcher N. 2015. Mechanical Processes. In: Kolditz O, Shao H, Wang W, Bauer S, editors. Springer International. p. 185–201.
Suwelack S, Stoll M, Schalck S, Schoch N, Dillmann R, Bendl R, Heuveline V, Speidel S. 2014. The Medical Simulation Markup Language-Simplifying the Biomechanical Modeling Workflow. In: Westwood JD, editor. Vol. 196. IOS Press. p. 394–400. https://doi.org/10.3233/978-1-61499-375-9-394.
Brennecke T, Jansen N, Raczkowsky J, Schipper J, Woern H. 2014. An Ultrasound-Based Navigation System for Minimally Invasive Neck Surgery. In: Westwood JD, editor. Vol. 196. IOS Press. p. 36. https://doi.org/10.3233/978-1-61499-375-9-36.
Krynauw H, Bruchmüller L, Bezuidenhout D, Zilla P, Franz T. 2014. Constitutive Effects of Hydrolytic Degradation in Electro-Spun Polyester-Urethane Scaffolds for Soft Tissue Regeneration. In: Fernandes PR, Bartolo PJ, editors. Vol. 31. Springer Netherlands. p. 49–67. https://doi.org/10.1007/978-94-007-7073-7_3.
Avanaki AN, Espig KS, Xthona A, Kimpe TRL, Bakic PR, Maidment ADA. 2014. It Is Hard to See a Needle in a Haystack: Modeling Contrast Masking Effect in a Numerical Observer. In: Fujita H, Hara T, Muramatsu C, editors. Vol. 8539. Springer International. p. 723–730. https://doi.org/10.1007/978-3-319-07887-8_100.
Bakic PR, Pokrajac DD, De Caro R, Maidment ADA. 2014. Realistic Simulation of Breast Tissue Microstructure in Software Anthropomorphic Phantoms. In: Fujita H, Hara T, Muramatsu C, editors. Vol. 8539. Springer International. p. 348–355. https://doi.org/10.1007/978-3-319-07887-8_49.
Li F, Porikli F. 2014. Biomechanical Simulation of Lung Deformation from One CT Scan. Vol. 13. Springer International. p. 15–28. https://doi.org/10.1007/978-3-319-03590-1_2.
Assassi L, Magnenat-Thalmann N. 2014. A Biomechanical Approach for Dynamic Hip Joint Analysis. In: Magnenat-Thalmann N, Ratib O, Choi HF, editors. Springer London. p. 233–252. https://doi.org/10.1007/978-1-4471-6275-9_10.
MadehKhaksar F, Luo Z, Pronost N, Egges A. 2014. Modeling and Simulating Virtual Anatomical Humans. Springer London. p. 137–164. https://doi.org/10.1007/978-1-4471-6275-9_6.
Muller JH. 2014. 14 - Computational Modelling of Knee Implants. In: Jin Z, editor. Woodhead Publishing. p. 417–446. https://doi.org/10.1533/9780857096739.4.417.
Reese SP, Ellis BJ, Weiss JA. 2013. Multiscale Modeling of Ligaments and Tendons. In: Gefen A, editor. Springer Berlin Heidelberg.
Guilie J, Thien Nga L, Le Tallec P. 2013. Micro-Sphere Model for Strain-Induced Crystallization in Rubber. CRC Press. p. 467–472. https://doi.org/10.1201/b14964-85.
Guilie J, Le Tallec P. 2013. Influence of Strain-Induced Crystallization on the Crack Driving Force in Fracture Behavior of Rubber. In: Alonso A, editor. CRC Press. p. 343–349. https://doi.org/10.1201/b14964-62.
Ateshian GA, Weiss JA. 2013. Finite Element Modeling of Solutes in Hydrated Deformable Biological Tissues. In: Holzapfel G, Kuhl E, editors. Springer Netherlands. p. 231–249. https://doi.org/10.1007/978-94-007-5464-5_17 Citation Key: Fes/2013_1.
Stark H, Schilling N, Fischer MS, Gussew A, Hiepe P, Rzanny R, Reichenbach JR, Ullrich B, Hofmann GO, Taut F, et al. 2013. Probandenspezifische Modellanpassungen für die Simulation ausgewählter Maßnahmen einer Wirbelsäulenstabilisierung. In: Kirchner C-J, Stadler M, Scholle H-C, editors. Vol. 19. Verlag Bussert & Stadeler. p. 335–339.
Stark H, Fröber R, Anders C, Schilling N. 2012. Intramuskuläre Architektur der menschlichen Rückenmuskulatur – Rekonstruktion, Modellierung & Simulation. In: Kirchner C-J, Stadler M, Scholle H-C, editors. Vol. 18. Verlag Bussert & Stadeler. p. 331–335.